
Notes: Mobile Application Development, Class: B.Sc. CS. TY, Unit I: Fundamentals of Mobile Programming

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 1

UNIT II: ANDROID ARCHITECTURE

2.1 Android Stack

2.2 Android applications structure

2.3 Creating a project

2.4 Configuring the Android Manifest File

2.5 Understanding the Components or layouts of a Screen

2.1 Android Stack

Android architecture is a software stack of components to support mobile
device needs. Android software stack contains a Linux Kernel, collection
of c/c++ libraries which are exposed through an application framework
services, runtime, and application.

Following are main components of android architecture those are

1. Applications

2. Android Framework

3. Android Runtime

4. Platform Libraries

5. Linux Kernel

In these components, the Linux Kernel is the main component in android to
provide its operating system functions to mobile and Dalvik Virtual
Machine (DVM) which is responsible for running a mobile application.

Notes: Mobile Application Development, Class: B.Sc. CS. TY, Unit I: Fundamentals of Mobile Programming

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 2

Applications

The top layer of the android architecture is Applications. The native and third-
party applications like contacts, email, music, gallery, clock, games, etc.
whatever we will build those will be installed on this layer only.

Application Framework

The Application Framework provides the classes used to create Android
applications. It also provides a generic abstraction for hardware access and
manages the user interface and application resources. It basically provides the
services through which we can create a particular class and make that class
helpful for the Application creation.

Android Runtime

Android Runtime environment is an important part of Android rather than an
internal part and it contains components like core libraries and the Dalvik
virtual machine. The Android run time is the engine that powers our
applications along with the libraries and it forms the basis for the application
framework.

Dalvik Virtual Machine (DVM) is a register-based virtual machine like Java
Virtual Machine (JVM). It is specially designed and optimized for android
to ensure that a device can run multiple instances efficiently. It relies on
the Linux kernel for threading and low-level memory management.

Platform Libraries

The Platform Libraries includes various C/C++ core libraries and Java-based
libraries such as SSL, libc, Graphics, SQLite, Webkit, Media, Surface Manger,
OpenGL, etc. to provide support for Android development.

Linux Kernel

Linux Kernel is a bottom layer and heart of the android architecture. It manages
all the drivers such as display drivers, camera drivers, Bluetooth drivers, audio
drivers, memory drivers, etc.

Notes: Mobile Application Development, Class: B.Sc. CS. TY, Unit I: Fundamentals of Mobile Programming

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 3

2.2 Android applications structure

Manifests Folder

This folder will contain a manifest file (AndroidManifest.xml) for our android
application. This manifest file will contain information about our application
such as android version, access permissions, metadata, etc. of our application
and its components. The manifest file will act as an intermediate between
android OS and our application.

Java Folder

This folder will contain all the java source code (.java) files which we’ll create
during the application development, including JUnit test code. Whenever we
create any new project/application, by default the class
file MainActivity.java will create automatically under the package name

res (Resources) Folder

It’s an important folder that will contain all non-code resources, such as bitmap
images, UI strings, XML layouts
The res (Resources) will contain a different type of folders that are

Notes: Mobile Application Development, Class: B.Sc. CS. TY, Unit I: Fundamentals of Mobile Programming

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 4

Drawable Folder (res/drawable)

It will contain the different types of images as per the requirement of
application. It’s a best practice to add all the images in a drawable folder other
than app/launcher icons for the application development.

Layout Folder (res/layout)

This folder will contain all XML layout files which we used to define the user
interface of our application. Following is the structure of the layout folder in the
android application.

Mipmap Folder (res/mipmap)

This folder will contain app / launcher icons that are used to show on the home
screen. It will contain different density type of icons such as hdpi, mdpi, xhdpi,
xxhdpi, xxxhdpi, to use different icons based on the size of the device.

Values Folder (res/values)

This folder will contain various XML files, such as strings, colors, style
definitions and a static array of strings or integers.

Gradle Scripts

In android, Gradle means automated build system and by using this we can
define a build configuration that applies to all modules in our application. In
Gradle build.gradle (Project), and build.gradle (Module) files are useful to
build configurations that apply to all our app modules or specific to one app
module.

Notes: Mobile Application Development, Class: B.Sc. CS. TY, Unit I: Fundamentals of Mobile Programming

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 5

2.3. Creating a project

Step 1: Android Studio makes it easy to create Android apps for various form
factors, such as handsets, tablets, TV, and Wear devices.

If you don't have a project opened, Android Studio shows the Welcome screen,
where you can create a new project by clicking Start a new Android Studio
project.

If you do have a project opened, create a new project by selecting File > New >
New Project from the main menu.

You then see the Create New Project wizard, which lets you choose the type of
project you want to create and populates with code and resources to get you
started. This page guides you through creating a new project using the Create
New Project wizard.

Choose your project

In the Choose your project screen that appears, you can select the type of
project you want to create from categories of device form factors, which are
shown as tabs near the top of the window.

Notes: Mobile Application Development, Class: B.Sc. CS. TY, Unit I: Fundamentals of Mobile Programming

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 6

After you make a selection, click Next.

1. Specify the Name of your project.

2. Specify the Package name. By default, this package name also becomes
your application ID, which you can change later.

3. Specify the Save location where you want to locally store your project.

4. Select the Language you want Android Studio to use when creating sample
code for your new project. Keep in mind, you are not limited to using only that
language in the project.

5. Select the Minimum API level you want your app to support. When you select a
lower API level, your app can't use as many modern Android APIs. However, a
larger percentage of Android devices are able to run your app. The opposite is
true when selecting a higher API level. If you want to see more data to help you
decide, click Finish Button.

2.4 Configuring the Android Manifest File

The AndroidManifest.xml file contains information of your package, including
components of the application such as activities, services, broadcast receivers,
content providers etc.

o It is responsible to protect the application to access any protected parts

by providing the permissions.

o It also declares the android api that the application is going to use.

o It lists the instrumentation classes. The instrumentation classes

provides profiling and other informations. These informations are

removed just before the application is published etc.

This is the required xml file for all the android application and located inside the
root directory.

Elements of the AndroidManifest.xml file

The elements used in the above xml file are described below.

1. <manifest>

manifest is the root element of the AndroidManifest.xml file. It
has package attribute that describes the package name of the activity class.

2. <application>

Notes: Mobile Application Development, Class: B.Sc. CS. TY, Unit I: Fundamentals of Mobile Programming

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 7

application is the subelement of the manifest. It includes the namespace
declaration. This element contains several subelements that declares the
application component such as activity etc.

The commonly used attributes are of this element are icon, label, theme etc.

android:icon represents the icon for all the android application components.

android:label works as the default label for all the application components.

android:theme represents a common theme for all the android activities.

3. <activity>

activity is the subelement of application and represents an activity that must be
defined in the AndroidManifest.xml file. It has many attributes such as label,
name, theme, launchMode etc.

android:label represents a label i.e. displayed on the screen.

android:name represents a name for the activity class. It is required attribute.

4. <intent-filter>

intent-filter is the sub-element of activity that describes the type of intent to
which activity, service or broadcast receiver can respond to.

4.1 <action>

It adds an action for the intent-filter. The intent-filter must have at least one
action element.

4.2 <category>

It adds a category name to an intent-filter.

<manifest>
 <application>
<activity android:name=".MainActivity" >
 </activity>
 </application>
</manifest>
5. <uses-permission>: This element specifies the Android Manifest
permissions that are requested for the purpose of security.

Notes: Mobile Application Development, Class: B.Sc. CS. TY, Unit I: Fundamentals of Mobile Programming

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 8

2.5 Understanding the Components or layouts of a Screen

1. Linear Layout

LinearLayout is the most basic layout in android studio, that aligns all the
children sequentially either in a horizontal manner or a vertical manner by
specifying the android:orientation attribute.

If one applies android:orientation=”vertical” then elements will be arranged
one after another in a vertical manner and

If you apply android:orientation=”horizontal” then elements will be
arranged one after another in a horizontal manner.

<? xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

</LinearLayout>

android:id

This is the ID which uniquely identifies the layout.

android:Layout_Gravity

This specifies how a control should position its content, on both the X and Y
axes. Possible values are top, bottom, left, right, center

android:gravity

This specifies how a text should position its content, on both the X and Y axes.
Possible values are top, bottom, left, right, center, center_vertical,
center_horizontal etc.

android:orientation

This specifies the direction of arrangement and you will use "horizontal" for a
row, "vertical" for a column. The default is horizontal.

android:weightSum

Sum up of child weight

android:LayoutWeight

It is use for Divide the weight sum according to the design.

Notes: Mobile Application Development, Class: B.Sc. CS. TY, Unit I: Fundamentals of Mobile Programming

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 9

2. Relative Layout
Android RelativeLayout enables you to specify how child views are positioned
relative to each other. The position of each view can be specified as relative to
sibling elements or relative to the parent.

1. android:layout_alignParentBottom.
If true, makes the bottom edge of this view match the bottom edge of the parent.
Must be a boolean value, either "true" or "false".

2. android:layout_alignParentRight

If true, makes the right edge of this view match the right edge of the parent. Must
be a boolean value, either "true" or "false".

3. android:layout_centerHorizontal

If true, centers this child horizontally within its parent. Must be a boolean value,
either "true" or "false".

4. android:layout_centerVertical

If true, centers this child vertically within its parent. Must be a boolean value,
either "true" or "false".

5. android:layout_centerInParent

If true, centers this child horizontally and vertically within its parent. Must be a
boolean value, either "true" or "false".

6. android:layout_above

Positions the bottom edge of this view above the given anchor view ID and must
be a reference to another resource, in the form

android:layout_above=”@id/text”

7. android:layout_below

Positions the top edge of this view below the given anchor view ID and must be
a reference to another resource

android:layout_below=”@id/text”

8. android:layout_toLeftOf
Positions the right edge of this view to the left of the given anchor view ID and
must be a reference to another resource

Notes: Mobile Application Development, Class: B.Sc. CS. TY, Unit I: Fundamentals of Mobile Programming

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 10

android:layout_ toLeftOf=”@id/text”

9. android:layout_toRightOf
Positions the left edge of this view to the right of the given anchor view ID and
must be a reference to another resource

android:layout_ toRightOf=”@id/text”

3. Table Layout

Android Table Layout going to be arranged groups of views into rows and
columns. You will use the <TableRow> element to build a row in the table. Each
row has zero or more cells; each cell can hold one View object.

android:id

This is the ID which uniquely identifies the layout.

android:collapseColumns

Collapse columns attribute is used to collapse or invisible the columns of a table
layout. These columns are the part of the table information but are invisible.

If the values is 0 then the first column appears collapsed, i.e. it is the part of table
but it is invisible.

android:shrinkColumns

Shrink column attribute is used to shrink or reduce the width of the column‘s. We
can specify either a single column or a comma delimited list of column numbers
for this attribute. The content in the specified columns word-wraps to reduce
their width.

Notes: Mobile Application Development, Class: B.Sc. CS. TY, Unit I: Fundamentals of Mobile Programming

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 11

If the value is 0 then the first column’s width shrinks or reduces by word
wrapping its content.

If the value is 0, 1 then both first and second columns are shrinks or reduced by
word wrapping its content.

If the value is ‘*’ then the content of all columns is word wrapped to shrink their
widths.

android:stretchColumns

Stretch column attribute is used in Table Layout to change the default width of a
column which is set equal to the width of the widest column but we can also
stretch the columns to take up available free space by using this attribute. The
value that assigned to this attribute can be a single column number or a comma
delimited list of column numbers (1, 2, and 3…n).

If the value is 1 then the second column is stretched to take up any available space
in the row, because of the column numbers are started from 0.

If the value is 0, 1 then both the first and second columns of table are stretched
to take up the available space in the row.

4. Constraint Layout

Advantages of using Constraint Layout in Android

 Constraint Layout provides you the ability to completely design your UI

with the drag and drop feature provided by the Android Studio design
editor.

 It helps to improve the UI performance over other layouts.
 With the help of Constraint Layout, we can control the group of widgets

through a single line of code.
 With the help of Constraint Layout, we can easily add animations to the UI

components which we used in our app.

Disadvantages of using Constraint Layout
 When we use the Constraint Layout in our app, the XML code generated

becomes a bit difficult to understand.
 In most of the cases, the result obtain will not be the same as we got to see

in the design editor.
 Sometimes we have to create a separate layout file for handling the UI for

the landscape mode.

android:id

Notes: Mobile Application Development, Class: B.Sc. CS. TY, Unit I: Fundamentals of Mobile Programming

 Prepared by: Mr. G. P. Shinde, COCSIT Latur Page 12

This is used to give a unique id to the layout.

app:layout_constraintBottom_toBottomOf

This is used to constrain the view with respect to the bottom position.

app:layout_constraintLeft_toLeftOf

This attribute is used to constrain the view with respect to the left position.

app:layout_constraintRight_toRightOf

This attribute is used to constrain the view with respect to the right position.

app:layout_constraintTop_toTopOf

This attribute is used to constrain the view with respect to the top position.

5. Frame Layout

Framelayout is a ViewGroup subclass that is used to specify the position
of View instances it contains on the top of each other to display only
single View inside the FrameLayout.

In simple manner, we can say FrameLayout is designed to block out an area on
the screen to display a single item.
FrameLayout will act as a placeholder on the screen and it is used to hold a
single child view.

In FrameLayout, the child views are added in a stack and the most recently
added child will show on the top. We can add multiple children views to
FrameLayout and control their position by using gravity attributes in
FrameLayout.

<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

</FrameLayout>

 The End

